Category Archives: dynamic

Sea Cucumber-Brain Implant

LeopardSeaCucumber.jpg.w300h225Sea cucumbers are found on the floor of all the world’s oceans. Their tubular shape resembles a cucumber taken from the garden. The animals frequent shallow coastal waters and are also found in the deepest ocean. Sea cucumbers, also called sea slugs, are colorful occupants of many salt water aquariums. The sea cucumber has the special ability to change its leathery skin from firm to flabby in just seconds. They tense up their body tissue by linking collagen fibers into a stiff net. When the fibers disconnect, the skin again becomes soft and pliable. Such behavior catches the interest of medical workers, especially brain specialists. Patients with Parkinson’s disease or paralysis can be treated by inserting tiny electrodes in the brain.

Technical application:

solve the contradiction “be soft and be stiff”

Continue reading Sea Cucumber-Brain Implant

Razor Clam – Anchor

razorclamThe razor clam has a long narrow shell, somewhat resembling an old-fashioned straight razor.  The shells also have a sharp edge. The clam is hunted for food in exposed mudflats along the ocean shoreline. Its defense against people and predators is an impressive ability to burrow underground rapidly. They can dig downward at about one centimeter per second to a depth of 70 centimeters, or about 28 inches.

Technical application:

anchoring vessels, seafloor monitoring equipment, and underwater cables

Continue reading Razor Clam – Anchor

“Killer Whales” inspire for Undersea Hydrophone

KillerwhalesSound is always produced and heard as a vibration, whether a violin string, vocal chords, or an ear drum. Sound vibrations in our hearing range vary between 20 and 20,000 cycles per second. Sound waves travel in air as vibrating air molecules, and also through water as pressure waves. Underwater microphones, or hydrophones, have long been used to track whale migrations, fish populations and submarines. The devices also service undersea oil wells and map the seafloor.

Technical application:

Continue reading “Killer Whales” inspire for Undersea Hydrophone

a much more efficient impellent for submarines

jellyfishA researcher at Caltech is developing new ways to power submarines and windmills using the lowly jellyfish. Jellyfish have a unique method of swimming through ocean water. Rather than using fins and flippers, they “pump” their body to produce ring-shaped pulses of water called vortex rings. These vortex rings are spinning, donut-shaped masses of water that the jellyfish uses as a launch pad to propel itself forward through the water. This type of swimming is much more efficient than pushing water backward in a single stream.

Technical application:

Continue reading a much more efficient impellent for submarines

Dolphin-Monofin

dolphin-inspired-man-made-fin_1Many sea creatures including dolphins, porpoises, and whales have a tail structure that results in impressive bursts of speed. Their tail fin, called a fluke, is waved back and forth to provide forward motion. Meanwhile, the pectoral and dorsal fins provide directional stability. Dolphins reach speeds of 30-40 miles/hour (48-64 km/hr) and can leap completely out of water. Similarly, massive whales are able to breach or break from the water surface as they churn their tails.

Technical application:

Continue reading Dolphin-Monofin

mimic the chameleons tongue will offer new robot arms

Cameleon_catching_insect.JPG.w300h200Chameleons display many design features including changing skin color and stereoscopic eyesight. Another feature is their ability to capture insects with an extended tongue. Upon sighting fresh prey, the chameleon quickly extends its tongue to twice its body length. The tongue moves outward at ten meters per second (33 ft/sec). Once released, the tongue is in free flight and unguided, so it must be launched with precision. In addition, the tongue must exert very little force to make a sticky capture without pushing the target insect away.

Technical application:

robot arms

Continue reading mimic the chameleons tongue will offer new robot arms

lizard tail for stabilizers

Lizard_EchseTownsville.jpg.w300h413Lizards are some of the most versatile animals on the planet. Geckoes for example can climb straight up walls, even across glass ceilings upside down. Their feet have been studied to learn how to make better adhesives. Now, lizards are the subject of a new investigation which includes the dinosaurs. Researchers are looking at how lizards use their tails for balance, resulting in similar mechanical “tails” for robots.

Technical application:

stabilizers

Continue reading lizard tail for stabilizers

the mystical movement of snakes

Red_milk_snake.JPG.w300h233Snakes have scales on their belly skin which help them move about. On a flat surface, the body weight is continuously redistributed for maximum friction, and the scales provide grip. Researchers at the Georgia Institute of Technology have made detailed studies of the movement of the milk snake. The result, which they call terrestrial lateral undulation, reveals complex motion.

Technical application:

Continue reading the mystical movement of snakes

your phone, inspired by yourself

Ear.jpg.w300h229 wilhelm_candlestick_telephoneThe eardrum is a marvel of engineering. As thin as tissue paper, it vibrates in response to the slightest changes in air pressure. If the eardrum surface moves inward a distance equal to the diameter of a single atom, one hundred millionth of a centimeter, a distinct sound is perceived. Clearly, a healthy eardrum is very sensitive.  Alexander Graham Bell (1847-1922) was a professor of vocal physiology at Boston University. At this time, electronic communication was limited to the dots and dashes of Morse Code. In his research, Bell looked for ways to transmit the various frequencies or vibrations of the human voice.

Technical application:

Continue reading your phone, inspired by yourself

flexible eye lens focused by a fluid

Fish_Eye The lens in our eye has a special designed feature called accommodation. That is, the lens changes shape, curvature, or focal length to bring images into focus. When we look at a far distant object the lens becomes thinner. For nearby objects the lens thickens and becomes rounder for clear vision. The flexibility is possible because tFocus_in_an_eye.jpghe lens is somewhat jellylike. Ciliary muscles around the edge of the lens control its shape. These muscles can become fatigued, and they recover when eyes are closed.

Technical application:

optical lens technology

Continue reading flexible eye lens focused by a fluid