Category Archives: balanced load

future glass will withstand the impact of a baseball

shellHow do sea shells stay in one piece as they are buffeted constantly by strong currents and waves? After all, most shells consist of calcium carbonate (CaCO3) which is a brittle and relatively weak material. Calcium carbonate takes many forms including marble, limestone, and chalk.

One secret of success is the distribution of fine cracks within the shell structure.

Technical application:

ultrastrong glass

Continue reading future glass will withstand the impact of a baseball

Human climbing with efficiently scaled gecko-inspired dry adhesives

spidermanWe present a mechanical concept which improves upon the gecko’s non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive.

Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency.

Technical application:

climb buildings, for cleaning a ships body

Continue reading Human climbing with efficiently scaled gecko-inspired dry adhesives

Dolphin-Monofin

dolphin-inspired-man-made-fin_1Many sea creatures including dolphins, porpoises, and whales have a tail structure that results in impressive bursts of speed. Their tail fin, called a fluke, is waved back and forth to provide forward motion. Meanwhile, the pectoral and dorsal fins provide directional stability. Dolphins reach speeds of 30-40 miles/hour (48-64 km/hr) and can leap completely out of water. Similarly, massive whales are able to breach or break from the water surface as they churn their tails.

Technical application:

Continue reading Dolphin-Monofin

lizard tail for stabilizers

Lizard_EchseTownsville.jpg.w300h413Lizards are some of the most versatile animals on the planet. Geckoes for example can climb straight up walls, even across glass ceilings upside down. Their feet have been studied to learn how to make better adhesives. Now, lizards are the subject of a new investigation which includes the dinosaurs. Researchers are looking at how lizards use their tails for balance, resulting in similar mechanical “tails” for robots.

Technical application:

stabilizers

Continue reading lizard tail for stabilizers

the mystical movement of snakes

Red_milk_snake.JPG.w300h233Snakes have scales on their belly skin which help them move about. On a flat surface, the body weight is continuously redistributed for maximum friction, and the scales provide grip. Researchers at the Georgia Institute of Technology have made detailed studies of the movement of the milk snake. The result, which they call terrestrial lateral undulation, reveals complex motion.

Technical application:

Continue reading the mystical movement of snakes

flexible eye lens focused by a fluid

Fish_Eye The lens in our eye has a special designed feature called accommodation. That is, the lens changes shape, curvature, or focal length to bring images into focus. When we look at a far distant object the lens becomes thinner. For nearby objects the lens thickens and becomes rounder for clear vision. The flexibility is possible because tFocus_in_an_eye.jpghe lens is somewhat jellylike. Ciliary muscles around the edge of the lens control its shape. These muscles can become fatigued, and they recover when eyes are closed.

Technical application:

optical lens technology

Continue reading flexible eye lens focused by a fluid

human eye as a model for better wiping systems

220px-Heckscheibenwischer_kl eyelid_2Engineer and inventor Robert Kearns (1929-2005) lived in Detroit, a region surrounded by the auto industry. One misty, rainy day he drove his Ford Galaxie across town. He was irritated by the constant scraping and vibration of the windshield wipers on the semi-dry windshield. At this time, most wipers had just two settings, one for normal rain and the other for a heavy downpour. Kearns also had only one good eye, and the constant smearing motion of the wipers did not help his vision or driving concentration. What happened next is what the Wall Street Journal calls “the kind of inspiration that separates inventors from ordinary people.” Kearn simply asked himself whether windshield wipers could mimic the blinking of our eyes.

Technical application:

windshield wipers

Continue reading human eye as a model for better wiping systems

Intestine – Fuel Tank

ooThis is an unusual example of practical designs found in nature. Automobiles have several new options for fuel including batteries, hydrogen gas, and natural gas. Natural gas is especially attractive because it is in good supply in the U.S., and emits only half the carbon dioxide of conventional fossil fuel. However, one challenge is to carry enough natural gas on board the vehicle for practical driving. Large, high pressure cylinders are expensive, bulky, and somewhat hazardous.

Technical application:

Continue reading Intestine – Fuel Tank

our brain inspires for supercomputers

Computers have come a long way but they still primitive compared with our own brainpower. Our brains can handle much more information and processing than any supercomputer yet developed. The brain is so far superior to current braincomputers that scientists seek ways to mimic its “wiring” in modern computers.

 

Technical application:

supercomputing

Continue reading our brain inspires for supercomputers