We present a mechanical concept which improves upon the gecko’s non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive.
Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency.
Technical application:
climb buildings, for cleaning a ships body
Continue reading Human climbing with efficiently scaled gecko-inspired dry adhesives →